Background. In utero haematopoietic stem cell transplantation (IUHSCT) could represent an alternative option to therapeutic abortion after prenatal diagnosis of thalassaemia. However, although in immunodeficiency syndromes chimerism has been described, in thalassaemia poor clinical success has been reported. One of the reasons is probably the graft failure due to an immune response of the fetuses.

Materials and methods. Therefore, we set up a clinical protocol by which two female fetuses affected by β-thalassaemia at 20 and 21 weeks of gestation were prenatally treated with low-dose dexamethasone and then transplanted with paternal circulating haematopoietic progenitor cells.

Results. Chimerism analysis performed after birth showed the presence, in both newborns, of Y cells in peripheral blood. Moreover, in one case an erythroid microchimerism was shown by the presence of paternal ABO allele A cDNA obtained from mononuclear peripheral blood cells at 2 months of age and by an unusual HbA value of 14.4%, thus indicating a slight transitory engraftment of infused paternal stem cells. However, because of both babies required transfusions before 12 months, these data confirm the difficulty for long-term successful with IUHSCT.

Conclusions. To obtain safe and successful results for fetuses with β-thalassaemia will remain a challenge of the next years.

Key words: IUHSCT, β-thalassaemia, Y chimerism, erythroid microchimerism, immunological tolerance

Original article

In utero stem cells transplantation after a mild immunosuppression: evidence of paternal ABO cDNA in β-thalassaemia affected fetus

Maria Concetta Renda1, Gianfranca Damiani2, Emanuela Fecarotta1, Maria Cristina Jakil2, Alessandro Indovina3, Francesco Picciotto2, Alessandra Santoro2, Rosanna Scime2, Francesco Dieli5, Raimondo Marcenò3, Aurelio Maggio1

1 Divisione di Ematologia II, Unità di Ricerca "Piera Cutino", AO V Cervello, Palermo
2 Divisione di Ostetricia e Ginecologia, Servizio Diagnosi Prenatale, AO V Cervello, Palermo
3 Divisione Medicina Trasfusionale, AO V Cervello, Palermo
4 Divisione di Ematologia I con Trapianto, AO V Cervello, Palermo
5 Istituto di Patologia Generale, Università degli Studi di Palermo, Italia

Introduzione

I rapidi progressi conseguiti nelle indagini genetiche e molare di individuare numerose malattie genetiche ereditarie in periodi precoci di gestazione, mediante il campionamento dei vili coriali (CVC) e l'analisi del DNA.

Il trapianto in utero di cellule staminali ematopoietiche (In utero Haematopoietic Stem Cell Transplantation, IUHSCT) potrebbe rappresentare una opzione alternativa all'aborto terapeutico in alcune emopatie genetiche ereditarie, quali le emoglobinopatie, in quanto, potenzialmente, potrebbe consentire la nascita di un neonato sano. Tuttavia, attualmente, l'attecchimento dopo IUHSCT si è ottenuto soltanto in caso di feti affetti da disordini immunologici, quali la sindrome di Bare (sindrome dei linfociti "nudi") o l'immunodeficienza combinata grave (Severe Combined ImmunoDeficiency, SCID)1-3.

Una delle principali barriere all'attecchimento del trapianto nel trattamento delle talassemie e della drenanocitosi è lo stato immunologico del ricevente4. Nella nostra esperienza, i feti affetti da β-talassemia o da drenanocitosi trapiantati fra la 14ª e la 20ª settimana di gestazione, innescano una risposta alloimmune, come dimostrato dall'alto numero di precursori di cellule T citotossiche (Cytotoxic T Lymphocyte precursor, CTLp) diretti contro le cellule del donatore5. Inoltre, attraverso indagini fenotipiche e molecolari eseguite sul sangue cordonale e sul fegato fetale, abbiamo evidenziato la presenza di trascritti di catene delle porzioni VDJ del TCRβ (Variable-Diversity-Joining T Cell Receptor β) sin dalla 7ª settimana di gestazione6, dimostrando così che il fetto è in grado di rigettare le CSE trapiantate. Tuttavia, anche un basso livello stabile di attecchimento di cellule del donatore potrebbe migliorare lo stato clinico e un trapianto prenatal...
Introduction

The rapid progress in genetic and molecular analysis allowed to detect several hereditary genetic diseases early in gestation, by means of corionic villus sampling (CVS) and DNA investigation.

*In utero* haematopoietic stem cell transplantation (IUHSCT) could be a prospective option to the therapeutic abortion in some haematological hereditary genetic syndromes like haemoglobinopathies, because, potentially, it could allow the birth of a disease free newborn.

However, at present, engraftment after IUHSCT have been obtained only in fetuses affected by immunological disorders like Bare Syndrome or severe combined immunodeficiency diseases (SCID)\(^1\)\(^-\)\(^3\).

One of the most important barrier to engraftment in treatment of thalassaemias and sickle cell disease is the immunological asset of recipient\(^4\). In our experience, fetuses affected by \(\beta\)-thalassaemia and sickle cell diseases, transplanted between the 14\(^{th}\) and the 20\(^{th}\) week of gestation, generated an alloimmune response as demonstrated by a high cytotoxic T cell precursor (CTLp) frequency against donor cells\(^5\). Moreover, by means of phenotypic and molecular studies on cord blood and fetal liver we found the presence of VDJ TCR\(\beta\) chain transcript since the 7\(^{th}\) week of gestation\(^6\), thus demonstrating that fetuses are able to reject transplanted stem cells. However, low levels of stable donor cell engraftment could be necessary to ameliorate the clinical status and prenatal haematopoietic stem cell transplantation could induce a donor-specific tolerance, that could permit a successive postnatal transplant of stem cells from the same donor.

For this reason, we set-up a clinical protocol by which fetuses 16-20 weeks old were transplanted by haematopoietic paternal stem cells after one week maternal 100\(\mu\)g/kg/die dexamethasone treatment to evoke a low level of fetal temporary immunodepression, that could avoid the rejection and induce a donor-specific tolerance.

Patients and methods

Prenatal diagnosis, performed between the 11\(^{th}\) and 13\(^{th}\) week of gestation by CVS and DNA analysis\(^7\), showed the presence of thalassaemia major affected fetus in both cases. Parents decided to continue the pregnancy anyway and IUHSCT option was then proposed and carried out. Protocol and consent forms were previously approved by Ethical Committee of our institution.

*Dexamethasone administration.* 100\(\mu\)g/kg/day of CSE potrebbe indurre una tolleranza donatore-specifica che, a sua volta, potrebbe permettere un trapianto postnatale di CSE dal medesimo donatore.

Per tale motivo, abbiamo approntato un protocollo clinico, secondo il quale feti di età compresa fra la 16\(^{a}\) e la 20\(^{a}\) settimana di gestazione sono stati trapiantati con CSE paterne dopo una settimana di trattamento nella madre con 100\(\mu\)g/kg/die di desametasone per instaurare un temporaneo stato di blanda immunodepressione nel feto, che potrebbe evitare il rigetto ed indurre una tolleranza donatore-specifica.

Pazienti e metodi

La diagnosi prenatale, effettuata fra l’11\(^{a}\) e la 13\(^{a}\) settimana di gestazione mediante CVC e analisi del DNA\(^7\), ha dimostrato che entrambi i feti erano affetti da talassemia major. Poiché i genitori hanno deciso di proseguire comunque le gravidanze, è stata loro proposta l’opzione IUHSCT, che è stata attuata. Il protocollo e i moduli di consenso erano stati preventivamente approvati dalla Commissione Etica del nostro Istituto.

*Ttrattamento con desametasone.* 100\(\mu\)g/kg/die di desametasone sono stati somministrati alle madri, iniziando dal giorno –7 rispetto all’IUHSCT e fino al giorno ± 9. Una dose singola di 0,50 mg è stata somministrata 6 ore prima del trapianto (giorno 0). La dose di desametasone è stata ridotta a 50\(\mu\)g/kg/die dal giorno ± 10 al giorno ± 30 e quindi smessa.

*Raccolta e purificazione delle CSE paterne CD34*\(^+\). Le PBSC (Peripheral Blood Stem Cells) paterne sono state mobilizzate mediante rhG-CSF (Granulocyte-Colony Stimulating Factor) ricombinante\(^8\)\(^-\)\(^9\). Entrambi i donatori erano stati compiutamente informati e avevano dato il loro consenso scritto. Dopo un approfondito screening sui marcatori batterici, fungini e virali, essi hanno ricevuto Lenograstim (rhG-CSF) 5\(\mu\)g/kg/die per 2 giorni e 10\(\mu\)g/kg/die (in due dosi) per i seguenti 2 giorni. È stata effettuata una singola raccolta di PBSC utilizzando il separatore cellulare a flusso continuo AS-104 (Fresenius Italia, Isola della Scala, VR, Italia), dopo l’ultima somministrazione di rhG-CSF, lavorando 10 litri di sangue. Sia il trattamento con rhG-CSF che la raccolta di PBSC sono stati ben tollerati. Dopo 15’ di centrifugazione a 1.500rpm, i progenitori CD34\(^+\) sono stati separati utilizzando colonne per la selezione magnetica positiva (Miltenyi Biotech GmbH, Bergish Gladbach, Germania). L’intera procedura, inclusa l’incubazione con anticorpi monoclonali anti-CD34, è stata effettuata a temperatura ambiente. Le cellule CD34\(^+\) sono
CSF (Lenograstim) 5 mg, contro batteriche, fungine e virali, ricevendo l’ACF-SF. Tutti i donatori furono informati e diedero il loro consenso. Dopo una cura accurata, per screening accurato dei campioni di sangue. Il trattamento con ACF-SF e la raccolta PBSC furono condotti a partire dal giorno successivo alla somministrazione dell’ACF-SF, processando 10 litri di sangue. L’ISP in due dosi. Un singolo pozzo di immunocitometria (ISP), di normalità in scegliere le dosi cellulari di limitazione da essere somministrate ai riceventi: 30-40x10^6/kg di CD34+ e 0,5-1x10^5/kg di CD3+ in base all’approssimazione del peso fetale. Le cellule rimanenti sono congelate a –140 °C per eventuali futuri interventi.

Determinazione dei precursori citotossici donatore-specifici. Per stabilire la presenza, fra le PBMC (Peripheral Blood Mononuclear Cells) dei riceventi, di cellule T citotossiche directe contro le cellule del donatore, sono state allestite colture delle cellule del ricevente da una concentrazione di 2x10^4/pozzetto, in 156 pozzetti contenenti RPMI (GIBCO, New York, NY, USA) a concentrazioni standard di penicillina, streptomicina, gentamicina, 2-mercaptopetanol e HEPES. Si sono aggiunti un 15% di siero umano inattivato al calore e 30U/mL di rhIL-2 (Pharmigen Ltd, San Diego, CA, USA).

Come cellule stimolatrici si sono utilizzate PBMC dal donatore o da controlli sani non correlati. Le cellule stimolatrici sono state irradiate con una sorgente di Cesio (3,000 rads) e poste nei pozzetti insieme a cellule responder alla concentrazione di 5x10^5 per pozzetto. Sono stati utilizzati 24 pozzetti per ciascuna delle concentrazioni cellulari, mantenendo, per controllo, 4 pozzetti senza cellule stimolatrici. A parte, sono state messe in coltura cellule stimolatrici alla dose di 1x10^6/mL in RPMI contenente IL-2 (30U/mL) e 1 μg/mL fitoemoagglutinina (PHA) da Phaseolus vulgaris, fornita dalla Sigma Chemical Co (St Louis, MO, USA). Ogni tre giorni, la metà del medium nelle piastre microtiter e nelle fiasche veniva sostituita con terreno di coltura fresco. Al giorno 7, i blasti stimolati da PHA erano impiegati come cellule bersaglio alla concentrazione di 1x10^6/pozzetto.

Per valutare l’attività citotossica si è determinato il rilascio della latticodeidrogenasi (LDH) a 6 ore. In sintesi, le cellule bersaglio, in triplicato, venivano poste in coltura insieme a cellule effetttrici in 200 μL di medium. Dopo 6 ore di incubazione a 37°C in 5% di CO₂, si raccoglievano 100 μL/pozzetto di supernatante e veniva immediatamente misurata l’attività LDH, usando uno specifico kit (Boehringer...
unrelated healthy controls were used. Stimulator cells were irradiated in a Caesium source (3,000 rads) and plated with responder at a concentration of 5x10^4/well. Twenty four wells for each cellular concentrations were set up and for 4 without stimulator as control. A part, stimulator cells were cultured at 1x10^6/mL in complete RPMI, containing IL-2 (30U/mL) and 1μg/mL of phytohaemagglutinin (PHA) from *Phaseolus vulgaris*, furnished by Sigma Chemical Co (St Louis, MO, USA). Every three days an half of media in microtiter plates and in flasks was replaced by fresh medium. At day 7, PHA blasts were used as target cells at a concentration of 1x10^4/well. To assess cytotoxic activity a 6-hr lactate dehydrogenase (LDH)-release assay was used. Briefly, target cells in triplicate were co-cultured with various concentrations of effector cells in 200μL of medium. Following 6-hr incubation at 37°C in 5% CO₂, 100mL/well supernatant was collected and LDH activity in the supernatant was immediately measured, using a commercially available detection kit for LDH (Boehringer Mannheim, Mannheim, Germany). LDH activity present in the assay medium alone served as background control and was subtracted from all values. The percentage of specific LDH-release was calculated with the following formula:

\[
\text{(% specific LDH-release)} = \frac{(\text{experimental release - effector spontaneous release - target spontaneous release}) \times 100}{(\text{maximum release - target spontaneous release})}
\]

Effector or target spontaneous release was obtained by incubating effector or target cells with assay medium alone, respectively. Maximum release of LDH was determined by incubating the presence of 1% Triton X-100 (Sigma Chemical Co). The spontaneous release of target cells was always <15% of the maximum LDH-release in all experiments. Wells were scored positive if the mean of OD of cultures in the presence of stimulator was three SD more than cultures without stimulator. Estimation of the frequency of peptide responder cells was performed by applying the Poisson formula:

\[
\text{Fr} = (\frac{u}{r!}) \times e^{-u}
\]

where Fr is the probability of obtaining r-specific responder cells in a well when the average number of responder cells per well is u, at a given concentration. The fraction of negative wells per total number of wells is given

\[
\text{Fr} = (\frac{u}{r!}) \times e^{-u}
\]

Il rilascio spontaneo delle cellule effettrici o di quelle bersaglio è stato ottenuto incubando le cellule effettrici o quelle bersaglio con il solo *medium*. Il rilascio massimo di LDH è stato determinato incubando le cellule in presenza di Triton X-100 (Sigma Chemical Co) all’1%. In tutti gli esperimenti, il rilascio spontaneo delle cellule bersaglio è sempre stato <15% del rilascio massimo. Si ritenevano positivi i pozzetti se la media della densità ottica (OD) delle colture in presenza di cellule stimolatrici aveva DS (deviazioni standard) tre volte superiori alle colture senza stimolatrici. La frequenza delle cellule responsive veniva stimata applicando la formula di Poisson:

\[
\text{Fr} = (\frac{u}{r!}) \times e^{-u}
\]

Valutazioni cellulari, molecolari ed ematologiche del sangue fetale. Subito prima di infondere le CSE paterni, sono stati raccolti 0,5mL di sangue fetale dal cordone ombelicale. Su questi campioni sono stati valutati i livelli di Hb totale, transaminasi, fosfatasi alcalina e bilirubina. Per analizzare le famiglie di TCR Vβ, è stato isolato l’RNA cellulare dai leucociti del sangue fetale, mediante la procedura RNAzol-B (Clontech, Paolo Alto, CA, USA). L’RT-PCR *(Reverse Transcriptase-Polymerase Chain
by \( FO = e^u \), when \( u = 1, FO = 0.37 \). Therefore, theoretically, when the average number of precursor cells per well is one, 37% of the wells will be scored as negative.

Extrapolation to this point in limiting dilution gives a number of cells, the reciprocal of which represents the frequency of the antigen-specific responder cells.

Cellular, molecular and haematological fetal blood evaluations. Just before the infusion of paternal haematopoietic stem cells, 0.5mL of fetal cord blood sample was taken. On this sample, total haemoglobin level, transaminases, alkaline phosphatase and bilirubin were evaluated.

To analyze TCR V\( \beta \) families, total cellular RNA was isolated from fetal cord blood white cells by RNAzol-B procedure (Clontech, Palo Alto, CA, USA). V\( \beta \) families RT-PCR (Reverse Transcription-Polymerase Chain Reaction) was performed, using specific primers as previously described. Fetal DNA was extracted by phenol-chloroform methods. Fetal ABO blood group was determined by DNA molecular analysis. To genotype the ABO locus by PCR, two sets of specific primers were used; PCR products were restricted by KpnI, BstEI,MspL and AluI according to the manufacturer’s instructions. The restricted products were analysed by vertical electrophoresis on 6% polyacrylamide gel ethidium bromide stained, according to the method of O’Keefe and Dobrovic, modified.

The presence of \( Y \) chromosome of donor origin in the peripheral blood of recipient was revealed by specific PCR primers and by FISH (Fluorescence In Situ Hybridization).

Results

Case 1

The first patient treated by IUHSCT was a female. Prenatal diagnosis, performed at 12 weeks gestation by CVS and DNA analysis, showed a thalassaemia affected girl with IVS1, nt6/cd39 genotype. Because parents refused elective abortion, procedure for the IUHSCT was carried out at 20\( w \) week of pregnancy.

Transplantation procedure. The treatment with rhG-CSF and PBSC collection were well tolerated by donor. The apheretic procedure yielded 356x10^6 CD34\(^+\) and 170x10^6 CD3\(^+\) cells, and, after selection, absolute cells yields were the following: 168.56x10^6 CD34\(^+\) and 1.72x10^5 CD3\(^+\) cells. According to the protocol, after seven days maternal dexamethasone treatment, the fetus received 40x10^6/kg Reaction) sulle famiglie V\( \beta \) è stata eseguita utilizzando primers specifici, come precedentemente descritto. Il DNA fetale è stato estratto con il metodo del fenolo-cloroformio. I gruppi ABO fetali sono stati determinati con analisi molecolare del DNA. Per determinare il genotipo ABO mediante PCR, sono state impiegate due serie di primers specifici; i prodotti della PCR sono stati digeriti con gli enzimi di restrizione KpnI, BstEI, MspL e AluI, secondo le istruzioni della ditta produttrice. I prodotti della restrizione sono stati analizzati con elettroforesi verticale su gel di poliacrilamida al 6% e successiva colorazione con bromuro di etidio, secondo il metodo di O’Keefe e Dobrovic, modificato. La presenza del cromosoma \( Y \) di origine del donatore nel sangue periferico dei riceventi è stata evidenziata con una PCR primer-specifica e con la FISH (Fluorescence In Situ Hybridization).

Risultati

Caso 1

La prima paziente trattata con IUHSCT era una femmina. La diagnosi prenatale, posta alla 12\( w \) settimana di gestazione impiegando CVC e analisi del DNA, ha evidenziato un feto affetto da talassemia con genotipo IVS1, nt6/cd39. Dato che i genitori avevano rifiutato l’aborto, si è proceduto a IUHSCT alla 20\( w \) settimana di gravidanza.

Procedura di trapianto. Sia il trattamento con rhG-CSF che la raccolta dei PBSC sono stati tollerati bene dal donatore. La procedura aferetica ha permesso la raccolta di 356x10^6 cellule CD34\(^+\) e 170x10^6 CD3\(^+\). Dopo selezione, le cellule raccolte sono state, in numero assoluto, le seguenti: 168,56 x 10^6 CD34\(^+\) e 1.72 x 10^5 CD3\(^+\).

In conformità con il protocollo, dopo la somministrazione di desametasone alla madre per 7 giorni, il feto ha ricevuto 40x10^6/kg cellule paterni CD34\(^+\) e 0,5x10^5/kg cellule CD3\(^+\), attraverso il cordone ombelicale. Il peso fetale alla 20\( w \) settimana è stato valutato, con tecnica ultrasonica, in 330±49g, secondo Hadlock et al. Il numero totale delle cellule infuse è stato di 14x10^6 CD34\(^+\) e 0,175x10^5 CD3\(^+\). La procedura non ha provocato effetti sfavorevoli né alla madre né al feto.

Valutazione del sangue fetale prima del trapianto. Nel sangue cordonale, prelevato prima dell’infusione di cellule staminali, non si sono evidenziate alterazioni dei livelli di Hb totale, delle transaminasi, della fosfatasi alcalina e della bilirubina. Anche il numero dei reticolociti era normale e l’analisi citogenetica, condotta sulle cellule mononucleari periferiche, evidenziava un feto 46, XX. L’analisi del DNA
CD34+ and 0.5x10^6/kg CD3+ paternal cells, by funicolar injection. Estimated fetal weight (EFW) at 20w gestation was calculated to be 330±49g by ultrasound, according to Hadlock et al. Total number of infused cells was 14x10^6 CD34+ and 0.175x10^5 CD3+. This procedure had not adverse effects both in the mother and in the fetus.

**Fetal blood evaluation before transplantation.** No altered values of total haemoglobin, transaminases, alkaline phosphatase and bilirubin levels were found in fetal cord blood, sampled before stem cell infusion. Fetal reticulocytes number was also normal and cytogenetic analysis, performed on peripheral mononuclear fetal blood cells, revealed a 46, XX fetus.

ABO DNA analysis on donor and recipient showed a disparity: the donor/recipient pair was a AO/OO, Rh+ group.

TCR Vß families analysis, carried out on fetal mRNA after 7 days of dexamathasone mother treatment, did not show significative differences with respect to the VDJ TCRß chain transcripts found, at same gestational age, in fetal liver cells.

**Gestation monitoring, birth and clinical course.** During gestation, fetal growth was monitored by ultrasound scanning every month, showing a normal fetal development. The baby born at 40 weeks of gestation by eutocic delivery, had shown a normal fetal development. The baby at 40 weeks of gestation by eutocic delivery, had shown a normal fetal development.

HbA accounted for 3.0% (Table I). Sono stati riscontrati livelli normali di transaminasi e fosfatasi alcalina, mentre la bilirubina totale era di 8,34mg/dL, con prevalenza dell'indiretta e la piccola ha mostrato un chiaro ittero neonatale sino a 1 mese d'età. A 2 mesi, l'Hb era 9,3g/dL e l'HbA era aumentata sino al 14,4% (Tabella I). In seguito a un'infezione respiratoria, all'età di 5 mesi l'Hb era diminuita a 6,8g/dL e la piccola ha iniziato regolare terapia trasfusionale (una volta al mese). Anche l'HbA era diminuita al 2,3%.

**Valutazione immunologica dopo la nascita.** L'analisi molecolare di TCR Vß, effettuata alla nascita su cDNA estratto dal sangue cordonale, ha rivelato un'espressione normale delle famiglie Vß, come atteso. La valutazione, sul sangue periferico della ricevente, dei CTLp donatore-specifici ha mostrato assenza di reattività immunologica nei riguardi delle cellule del donatore. Infatti, alla nascita, la frequenza delle CTLp contro le cellule del donatore era significativamente più bassa quando confrontata con quella delle CTLp contro cellule incompatibili (Tabella II). A 12 mesi d'età, dopo aver iniziato il regime trasfusionale, si è evidenziata una lenta conversione delle CTLp verso l'usuale frequenza nei riguardi di donatori aploidentici (Tabella II).

**Analisi del chimerismo dopo trapianto.** La tipizzazione molecolare ABO, eseguita a 2 mesi di età su cDNA da sangue periferico, ha rilevato la presenza dell'allele paterno A (Figura 1). Inoltre, è stato evidenziato, con PCR allele-specifica, un frammento cromosomico Y nei linfociti periferici della piccola (Figura 2). Questo dato è stato confermato dalla FISH (Figura 3) eseguita alla nascita sul sangue periferico, analisi che ha dimostrato 2 cellule Y su 1.050. Il test Y-PCR si è mantenuto positivo sino a 1 anno di età.

**Case 2**

Anche il secondo feto era di sesso femminile e affetto da β-talassemia con genotipo IVS2, nt745/cd39. Con procedura aferetica, sono state raccolte 437x10^6

---

**Table I - Haemoglobin levels tested on newborns peripheral blood after IUHSCT**

<table>
<thead>
<tr>
<th></th>
<th>At birth</th>
<th>At 2 months</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hb g/dL</td>
<td>HbA%</td>
<td>HbF%</td>
</tr>
<tr>
<td>Case I</td>
<td>14.4</td>
<td>3.0</td>
</tr>
<tr>
<td>Case II</td>
<td>13.2</td>
<td>2.3</td>
</tr>
</tbody>
</table>

Physiological levels of transaminases and alkaline phosphatase were found; however, total bilirubin was 8.34mg/dL, with prevalence of indirect bilirubin, and the baby showed a clear neonatal jaundice until one month after birth.

At the 2 months of age, the haemoglobin level was 9.3g/dL, while the HbA increased to 14.4% (Table I).

Owing to a respiratory infection, at the 5 month of age haemoglobin decreased at 6.8 g/dL and the girl started a regular blood transfusional regimen (every month); HbA also decreased to 2.3%.

**After birth immunological evaluation.** The molecular analysis of TCR Vß, tested at birth on cord blood cDNA, demonstrated a normal expression of Vß families according per il gruppo ABO dimostrava la seguente disparità donatore/ricevente: AO/OO, Rh+. L'analisi delle famiglie TCR Vß, effettuata su mRNA fetale dopo 7 giorni di trattamento della madre con desametasone, non ha mostrato significative differenze rispetto ai trascritti VDJ TCRβ trovati, in eguale periodo gestionale, nel fegato fetale.

Monitoraggio della gravidanza, parto e decorso clinico. L’accrescimento fetale nel corso della gravidanza è stato monitorato ogni mese con scansione ultrasonica ed ha mostrato un normale sviluppo del feto. La bambina è nata alla 40ª settimana di gestazione da parto eutocico, senza segni di GvHD (Graft versus Host Disease). Alla nascita, l'Hb totale era di 14.4g/dL e la quota di HbA era del 3% (Tabella I). Sono stati riscontrati livelli normali di transaminasi e fosfatasi alcalina, mentre la bilirubina totale era di 8.34mg/dL, con prevalenza dell'indiretta e la piccola ha mostrato un chiaro ittero neonatale sino a 1 mese d'età. A 2 mesi, l'Hb era 9.3g/dL e l'HbA era aumentata sino al 14.4% (Tabella I). In seguito a un'infezione respiratoria, all'età di 5 mesi l'Hb era diminuita a 6.8g/dL e la piccola ha iniziato regolare terapia trasfusionale (una volta al mese). Anche l'HbA era diminuita al 2,3%.

Valutazione immunologica dopo la nascita. L'analisi molecolare di TCR Vß, effettuata alla nascita su cDNA estratto dal sangue cordonale, ha rivelato un'espressione normale delle famiglie Vß, come atteso. La valutazione, sul sangue periferico della ricevente, dei CTLp donatore-specifici ha mostrato assenza di reattività immunologica nei riguardi delle cellule del donatore. Infatti, alla nascita, la frequenza delle CTLp contro le cellule del donatore era significativamente più bassa quando confrontata con quella delle CTLp contro cellule incompatibili (Tabella II). A 12 mesi d'età, dopo aver iniziato il regime trasfusionale, si è evidenziata una lenta conversione delle CTLp verso l'usuale frequenza nei riguardi di donatori aploidentici (Tabella II).

Analisi del chimerismo dopo trapianto. La tipizzazione molecolare ABO, eseguita a 2 mesi di età su cDNA da sangue periferico, ha rilevato la presenza dell'allele paterno A (Figura 1). Inoltre, è stato evidenziato, con PCR allele-specifica, un frammento cromosomico Y nei linfociti periferici della piccola (Figura 2). Questo dato è stato confermato dalla FISH (Figura 3) eseguita alla nascita sul sangue periferico, analisi che ha dimostrato 2 cellule Y su 1.050. Il test Y-PCR si è mantenuto positivo sino a 1 anno di età.
to the expected pattern. The evaluation, in peripheral recipient blood, of donor specific cytotoxic precursor (CTLp) frequency showed an absence of immunological reactivity of recipient versus donor cells. In fact, at the birth the frequency of CTLp versus donor was significantly lower with respect to the frequency of CTLp versus full mismatched cells (Table II). At the 12 months of age, after the start of transfusional regimen, it was detected a slow conversion of CTLp to a frequency usually revealed versus haploidentical donors (Table II).

### Chimerism analysis after transplantation

**ABO molecular typing** carried out at the 2 months of age on cDNA from peripheral blood, revealed the presence of the paternal allele A (Figure 1). Moreover, Y chromosome fragment was detected on peripheral blood lymphocytes of the girl by means of allele specific PCR (Figure 2), and confirmed by FISH analysis (Figure 3), performed at birth on peripheral blood, that showed 2/1,050 Y-cells. Y-PCR test was positive until 1 year age.

### Case 2

The second fetus was also a female, affected by β-thalassaemia with IVS2, nt745 /cd39 genotype. After apheretic procedure, 437x10^6 CD34^+ and 185x10^8 CD3^+ cells were collected, and, after selection, absolute cells yields were the following: 275.68x10^6 CD34^+ and 1.84x10^5 CD3^+ cells.

IUHSCT was carried out at 21st weeks of gestation and the transplant consisted in 38x10^6/kg CD34^+ and 0.6x10^5/kg CD3^+ mobilised from paternal peripheral blood (EFW at 21ws gestation 400±59g; total number of infused cells: 17x10^6 CD34^+ and 0.258x10^5 CD3^+).

Mother dexamethasone treatment was the same as for the Case 1. Total haemoglobin, transaminases and bilirubine normal levels were found when tested on cord blood, collected before paternal stem cells infusion.

### Birth and clinical course

Fetal development was monitored during the pregnancy and the baby born at 39th cellule CD34^+ e 185x10^6 cellule CD3^+. Dopo selezione, i numeri assoluti di cellule raccolte sono stati i seguenti: 275,68x10^6 CD34^+ e 1,84x10^5 CD3^+. Il trapianto è stato eseguito alla 21a settimana di gestazione ed è consistito di 38x10^6/kg di CD34^+ e 0,6x10^5/kg di CD3^+, mobilizate da sangue perifero del padre. Il peso del feto alla 21a settimana di gestazione è stato stimato in 400±59g. Il totale delle cellule infuse è stato di: 17x10^6 CD34^+ e 0,258x10^5 CD3^+.

Il trattamento della madre con desametasone è stato identico a quello del caso 1. Sul sangue del cordone ombelicale, prelevato prima dell’infusione delle cellule staminali paterni, si sono evidenziati livelli normali di Hb totale, di transaminasi e di bilirubina.

**Parto e decorso clinicoo**. Lo sviluppo fetale è stato monitorato nel corso della gravidanza e la bambina è nata alla 39a settimana di gestazione, da parto eutocico, senza alcun sintomo di GvHD. Alla nascita, l’Hb totale era di 13,2g/dL e l’HbA del 2,3% (Tabella I). È stato evidenziato un alto livello di bilirubina totale e la piccola ha sofferto di ittero neonatale. Durante il primo trimestre di vita, l’Hb totale è lentamente diminuita e all’età di 3 mesi e mezzo, la piccola ha dovuto iniziare regolare terapia trasfusionale (ogni 25 giorni).

**Valutazione immunologica e analisi del chimerismo dopo trapianto**. L’analisi molecolare sulle famiglie TCR Vβ effettuata sul cordone ombelicale ha dimostrato il quadro atteso. La frequenza delle CTLp ha testimoniato una tolleranza dei riceventi nei riguardi delle cellule del donatore, quando paragonata con la risposta immune dello stesso ricevente nei riguardi di cellule di controllo (Tabella II). La tolleranza è diminuita con l’età e con l’inizio della terapia trasfusionale. (Tabella II).

Alla nascita stata evidenziata la presenza del il cromosoma Y nei linfociti del sangue perifero mediante analisi FISH, che ha rivelato la presenza di 1 cellula Y su 1.120.

### Discussione e conclusioni

Come ipotizzato, le "barriere all’attecchimento" in un IUHSCT potrebbero essere determinate da tre fattori principali: a) il numero limitato di siti ricettivi nel microambiente fetale; b) il grande numero di cellule del donatore necessarie per competere con successo, nei riguardi di questi siti, con le cellule dell’ospite; c) il grado di tolleranza fetale, che è aleatoria e dipende dalla cadenza della presentazione degli antigeni e dalla sua appropriatezza. Quest’ultimo punto fa anche supporre che potrebbe essere necessaria una condizione preimmune, come suggerito dagli studi su pecore e scimmie e dai

<table>
<thead>
<tr>
<th>Case</th>
<th>At birth</th>
<th>At 12 months</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Vs donor</td>
<td>Vs third party</td>
</tr>
<tr>
<td>Case I</td>
<td>2/10^6</td>
<td>80/10^6</td>
</tr>
<tr>
<td>Case II</td>
<td>&lt;1/10^6</td>
<td>33/10^6</td>
</tr>
</tbody>
</table>
Figure 1 - Case I fetus ABO microchimerism tested by KpnI digestion of allele A and O PCR fragment
Lane 1 ABO genotype of donor stem cells (father): allele A 96bp fragment; allele O 69bp fragment
Lane 2 ABO genotype of recipient after transplantation: presence of allele A 96bp fragment in an OO genotype subject

Figure 2 - Y chromosome specific PCR analysis performed on peripheral blood lymphocytes
Lane 1: fX 174 Hae III digest DNA marker
Lane 2: donor sample (father)
Lane 3: in utero transplante female newborn sample
Lane 4: mother sample
Lane 5: negative control (woman DNA)
Lane 6: positive control (man DNA)
Lane 7: as lane 3

Figure 3 - FISH analysis performed at birth on peripheral blood lymphocytes of case I in utero transplanted female newborn: green fluorescence reveals the presence of XY cells in a female subject
week, by eutocic delivery, without any GvHD signs. At birth, total haemoglobin was 13.2g/dL and HbA accounted for 2.3% (Table I). High total bilirubin levels were founded and the baby showed neonatal jundice.

During the first trimester of postnatal life, total haemoglobin slowly decreased, and at age of 3.5 months the girl started regular blood transfusions (every 25 days).

Immunological evaluation and chimerism analysis after transplantation. TCR-Vβ families mRNA expression at birth, tested on cord blood, showed the expected pattern. The frequency of CTLp showed a tolerance developed by the recipient versus donor cells when compared to the immunological response of recipient versus control cells (Table II). Tolerance decreased with the age and after the start of transfusional regimen (Table II). Y chromosome in peripheral blood lymphocytes was demonstrated at birth by FISH analysis, that revealed the presence of 1/1,120 Y-cells.

Discussion and conclusions

As it was suggested, the "engraftment barriers" on IUHSCT could be determined by three main factors: a) the limited number of receptive sites in the fetal microenvironment; b) the large number of donor cells needed to successfully compete with host cells for these sites; c) the grade of the possible fetal tolerance, which is uncertain, depending on timing and appropriate presentation of antigens. The last point raised also the possibility that a preimmune condition could be necessary, as suggested by sheep and monkeys studies, and by the successful IUHSCT in human fetuses with X-SCID. On the contrary, previous experience on IUHSCT in β-thalassaemia major affected fetuses suggested not detectable engraftment, except in one case reported by Touraine, in which transitory engraftment was documented by the presence of the Y chromosome of donor origin and an increase of HbA level (but not erythroid microchimerism was reported) and by Hayashi et al. These last Authors showed, in the murine model with thalassaemia, that a combined approach of IUHSCT, followed by postnatal donor lymphocytes infusion (DLI), can convert low-level, mixed hematopoietic chimerism to complete donor chimerism across full major histocompatibility complex barriers, with minimal risk for GvHD.

Besides these cases and those with immunodeficiency syndromes, only in an α-thalassaemia case, transplanted at 13 weeks of gestation with paternal CD34+ enriched cells, microchimerism and tolerance were suggested.

IUHSCT eseguiti con successo in feti umani affetti da X-SCID. Le precedenti esperienze di IUHSCT in feti affetti da β-talassemia major non hanno evidenziato nessun apprezzabile attecchimento, tranne in un caso riferito da Touraine, nel quale è stato documentato un attecchimento transitorio, documentato dalla presenza del cromosoma Y del donatore e dall'aumento dei livelli di HbA (ma senza riportare microchimerismo eritroide). Recentemente, Hayashi et al. hanno mostrato, nel modello murino con talassemia, che un approccio combinato di IUHSCT, seguito da DLI (Donor Lymphocytes Infusion) postnatale, è in grado di convertire un chimerismo ematopoietico misto a basso livello in un chimerismo totale (del donatore), superando le barriere del complesso maggiore di istocompatibilità, con minimo rischio di GvHD. Escludendo questi casi e quelli con sindromi da immunodeficienza, soltanto in un caso di α-talassemia, trapiantato alla 13ª settimana di gestazione con CD34+ paterno, è stato adombrato microchimerismo e uno stato di tolleranza. Il protocollo di IUHSCT descritto in questo nostro lavoro è stato progettato con lo scopo di superare le barriere all'attecchimento, inducendo una blanda immunosoppressione fetale con dosi di desametasone decisamente più basse di quelle usate per la prevenzione della deficienza di 21-idrossilasi e somministrando, nel contempo, un gran numero di cellule del donatore, nel tentativo di favorire l'ematoipoesi dell'ospite e di indurre un microchimerismo stabile, anche se minimo.

Durante queste procedure, non si sono osservati effetti sfavorevoli. Le madri trattate con desametasone non hanno sofferto di effetti collaterali. Lo sviluppo fetale in utero è avvenuto regolarmente e le piccole trattate sono nate a termine, con peso normale alla nascita. Tuttavia, entrambe hanno sofferto di ittero neonatale sino circa a 1 mese di età. Cosa interessante, in ambedue le coppie donatore/ricevente era presente una incompatibilità ABO (maggiore nel caso 1 e minore nel caso 2) e si è ipotizzata un possibile legame fra tali incompatibilità e l'ittero. È peraltro, concepibile che, almeno per il caso 1, l'attecchimento delle cellule del donatore sia stato in parte danneggiato dalle isoglutattinine dell'ospite, in grado di sopprimere l'ematoipoesi eritrocritaria. Inoltre, anche se la frequenza delle CTLp contro le cellule del donatore era, alla nascita, circa quaranta volte più bassa rispetto a quella contro le cellule di controllo, è azzardato sostenere che sia stata ottenuta una condizione di tolleranza (Tabella II). Infine, è degno di nota sottolineare che abbiamo dimostrato, nel caso 1, a 2 mesi di età, la presenza nel sangue periferico dell'espressione (cDNA) dell'allele A paterno (Figura 1), a sostegno di un microchimerismo eritroide. Cosa interessante, questa neonata mostrava un aumento dell'HbA dal 3 al 14,4%, valore insolito in un soggetto con un
The IUHSCT protocol described in our paper was designed with the aim to overcome the engraftment barrier by inducing a transient mild fetal immunosuppression with a dose of dexamethasone fairly lower than that used in prevention of 21-hydroxylase deficiency\textsuperscript{24} and giving, at the same time, a large number of donor cells, in the attempt to favour host haematopoiesis and to establish a stable, even if minimal, microchimerism.

During these procedures, no adverse events were observed. Dexamethasone-treated mothers did not show any side effects. Fetal growth \textit{in utero} was regular and treated children were delivered not prematurely, with normal weight at birth. However, both newborns showed a clear neonatal jaundice until about one month of age. Interestingly, in both donor/recipient pair an ABO disparity was present (major in Case 1, minor in Case 2) and a possible link between ABO incompatibility and jaundice was hypothesized. Nevertheless, it is conceivable that, at least in Case 1, donor cell recovery could be impaired in part by host isoagglutinins, able to suppress red cells haematopoiesis.

Moreover, even if CTLp frequency versus donor cells at birth was about forty fold lower with respect to full mismatched control cells, it is air to say that tolerance was obtained (Table II).

Finally, it is noteworthy to point out that, in Case 1 at two months of age, we showed the presence of paternal blood group allele A cDNA in peripheral blood (Figure 1), suggesting that erithroid microchimerism has been occurred. Interestingly, the same child showed an increasing of HbA from 3\% to 14.4\%, an unusual value at that age for a baby with IVS1, nt6/cd39 genotype. This could be explained by a transitory engraftment of donor cells, as it was previously shown in the case described by Touraine\textsuperscript{20}.

This paper describes for the first time a paternal ABO cDNA in a ß-thalassaemia affected fetus transplanted after a mild immunosuppression. However, our results confirm what it was previously shown by other Authors\textsuperscript{22,23,25,26} and point out the difficulties that we, so far, have to overcome the "engraftment barriers"\textsuperscript{24}. For this reason, how to obtain long-term successful and safe results for all fetuses with ß-thalassaemia will remain a challenge of the next years in IUHSCT research field.

Riassunto

Premessa. \textit{Il trapianto di cellule staminali ematopoietiche (CSE) in utero potrebbe rappresentare un’opzione alternativa all’aborto terapeutico a seguito di una diagnosi prenatale di feto affetto da talassemia. Tuttavia, nonostante sia stato descritto chimerismo in casi di sindromi da immunodeficienza, sono scarsi i successi clinici nella talassemia. Un possibile motivo del fallimento del trapianto è probabilmente dovuto alla risposta immune da parte del feto.}

Materiali e metodi. È stato messo a punto un protocollo clinico con il quale due feti femmina, affetti da ß-talassemia, sono stati trattati con desametasone a basse dosi in un periodo prenatal compreso tra la 20\textsuperscript{a} e 21\textsuperscript{a} settimana di gestazione, per poi trapiantarli con progenitori ematopoietici circolanti.

Risultati. L’analisi del chimerismo eseguita dopo la nascita, ha dimostrato la presenza, in entrambe le neonate, di cellule con cromosoma Y nel sangue periferico. Inoltre, in un caso, si è evidenziato un microchimerismo eritroide per la presenza di cDNA ABO paterno (allele A) nelle cellule mononucleate periferiche a 2 mesi di età della neonata e per un insolito valore di HbA (14.4\%), a ulteriore testimonianza di un attecchimento transitorio delle cellule staminali paterne. Tuttavia, dato che entrambe le bambine hanno richiesto supporto trasfusionale prima dei 12 mesi di età, si conferma la difficoltà di ottenere successi a lungo termine.

Conclusioni. Ottenere risultati sicuri con il trapianto di CSE in utero resta una sfida per gli anni avvenire.

Parole chiave: trapianto di CSE in utero, ß-talassemia, chimerismo Y, microchimerismo eritroide, tolleranza immunologica
References


